If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x=77
We move all terms to the left:
2x^2+14x-(77)=0
a = 2; b = 14; c = -77;
Δ = b2-4ac
Δ = 142-4·2·(-77)
Δ = 812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{812}=\sqrt{4*203}=\sqrt{4}*\sqrt{203}=2\sqrt{203}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{203}}{2*2}=\frac{-14-2\sqrt{203}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{203}}{2*2}=\frac{-14+2\sqrt{203}}{4} $
| x-91=12 | | -19.9=-2.4+v/7 | | (n−8.45)2=3.03 | | 40-k=72 | | -1.9s=5.4 | | u/8+1=-9 | | -3/8x+22=-20 | | 4=1/4p | | -4/9x+14=-18 | | -4.2=u/8+8.6 | | 2n+3.6=6.2 | | 69-z=51 | | 2n+2.6=4.8 | | 214-x=273 | | 17=w/2+7 | | y/7-3.5=-14.7 | | 10b-5=45 | | 7x+4=69 | | 1/8(12x-6)-2x=-13 | | 163=72-x | | 16x^-4+63x^-2-4=0 | | 0.9x=0.5x+10 | | 97+38=z | | 5y÷2=15. | | A(n)=-9+(n-1)(6) | | 5v+10=65 | | 0.007y-0.03=0.009y+0.06 | | 3(2x-14)=-3(-13=x) | | 5v+3v=64= | | y/4-16=22 | | 67=y+83 | | -12(2.3x-9.8)=123 |